# Molecular Structure and Magnetic Properties of $\mu$-Oxo-bis[4-chloro-2,6-pyridinedicarboxylatodiaquoiron(III)] Tetrahydrate, $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, a Complex with a Linear $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ Unit 

Chia Chih Ou, ${ }^{\text {la }}$ Ronald G, Wollmann, ${ }^{\text {1b }}$ David N, Hendrickson, ${ }^{* 1 b}$ Joseph A, Potenza,*1a and Harvey J, Schugar*1a<br>Contribution from Wright \& Rieman Chemistry Laboratories, Rutgers, The State University, New Brunswick, New Jersey 08903, and the School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801. Received August 5, 1977


#### Abstract

The crystal and molecular structure of the title complex has been determined from single-crystal three-dimensional x -ray data collected by counter methods. $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ crystallizes in space group $\mathrm{C} 2 / \mathrm{c}\left(C_{2 h}^{6}\right.$, no. 15) with $Z=4, a=10.25(1), b=23.71$ (1), $c=10.015(6) \AA, \beta=90.0(1)^{\circ} ; d_{\text {calcd }}=1.831, d_{\text {obsd }}=1.83(1) \mathrm{g} / \mathrm{cm}^{3}$. Leastsquares refinement of 2405 reflections having $F^{2} \geq 3 \sigma\left(F^{2}\right)$ gave a conventional $R$ factor of 0.049 . The structure consists of discrete [ $\left.\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O}$ units with chemically (although not crystallographically) equivalent six-coordinate Fe (III) ions. Distorted octahedral $\mathrm{NO}_{5}$ donor sets are composed of a bridging oxide ion, two water molecules, and a tridentate pyridinedicarboxylate ligand. $\mathrm{Fe}-\mathrm{O}$ bond distances within the linear (crystallographically required) $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ unit are 1.773 (2) and 1.772 (3) $\AA$ and result in a $\mathrm{Fe} \cdots \mathrm{Fe}$ separation of 3.545 (1) $\AA$. Magnetic susceptibility measurements show that the effective magnetic moment per Fe(III) gradually decreases from $1.94 \mu_{\mathrm{B}}$ at 270 K to $0.19 \mu_{\mathrm{B}}$ at 4.2 K . In the context of the $H=$ $-2 J \bar{S}_{1} \bar{S}_{2}$ spin-spin coupling model with $g$ fixed at 2.0 , the susceptibility data can be computer fitted with the parameters $-J$ $=115 \mathrm{~cm}^{-1}$ and TIP $=1.2 \times 10^{-3} \mathrm{cgsu}$. An improved fit was obtained by incorporating a correction for $0.08 \%$ of an $S=5 / 2$ $\mathrm{Fe}\left(\right.$ III ) impurity, and yielded the parameters $-J=107 \mathrm{~cm}^{-1}$, TIP $=8.5 \times 10^{-4} \mathrm{cgsu}$. The extent of superexchange coupling in the title complex barely lies outside the range ( $-J=90-100 \mathrm{~cm}^{-1}$ ) reported for various bent ( $\angle \mathrm{Fe}-\mathrm{O}-\mathrm{Fe}=139-178^{\circ}$ ) oxobridged $\mathrm{Fe}(\mathrm{III})$ dimers with nonheme ligands and $\mathrm{Fe}-\mathrm{O}$ distances in the range $1.76-1.82 \AA$. The extent of superexchange coupling within $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ units is not a very sensitive function of the $\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ bridging angle. More robust coupling ( $-J=122-146$ $\mathrm{cm}^{-1}$ ) exhibited by various oxo-bridged $\mathrm{Fe}(\mathrm{III})$ heme dimers may be attributed in part to especially tight $\mathrm{Fe}-\mathrm{O}$ bonding within their $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ units. Another possible contributing factor to these larger negative $J$ values is the neglect of axial zero-field splitting in the Fe (III) heme units. Infrared spectra of the title complex are presented and discussed.


## Introduction

Polynuclear complexes with two or more $\mathrm{Fe}(\mathrm{III})$ ions bridged by oxygen donor ligands play a central role in the inorganic and bioinorganic chemistry of the ferric ion. ${ }^{2,3}$ The simplest of these are dimeric species which contain either $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ or $\mathrm{Fe}_{2}(\mathrm{OH})_{2}{ }^{4+}$ units. The relative ease of isolating oxo-bridged dimers in pure crystalline form has facilitated detailed characterization of the magnetic, electronic spectral, vibrational, and other features of the $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ unit. ${ }^{4}$ Oxobridged Fe (III) dimers display substantial antiferromagnetism which may be attributed to superexchange coupling of $S=5 / 2$ ferric ions via the oxo bridge. A series of such dimers differing in the coordination number of the Fe (III) ions (5-7), the chemical nature of the nonbridging ligands, and the $\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ bridging angle (139-178 $)$ all displayed a magnetochemistry well described by the $-2 J \bar{S}_{1} \bar{S}_{2}$ exchange Hamiltonian with with $\bar{S}_{1}=\bar{S}_{2}=5 / 2,-J=90-100 \mathrm{~cm}^{-1}$, and $g=2.0$. In contrast, various oxo-bridged Fe (III) heme dimers showed a significantly larger superexchange coupling $(-J=122-146$ $\mathrm{cm}^{-1}$ ). ${ }^{5}$ The source(s) of this enhanced antiferromagnetism has yet to be identified. The two heme dimers which have been studied crystallographically both contain nearly linear $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ units ( $\left.\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}, 172-174.5^{\circ}\right)^{5,6}$ and have relatively short $\mathrm{Fe}-\mathrm{O}$ distances ( $\approx 1.73-1.763$ (1) $\AA$ ). The efficiency of antiferromagnetic superexchange in such systems depends on appropriate orbital overlap and is thought to maximize for a linear $\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ bridge with tight $\mathrm{Fe}(\mathrm{III})-\mathrm{O}$ bonding. ${ }^{7}$ Moreover, the enhanced antiferromagnetism of the heme dimers may reflect in some way the special electronic nature and structural restraints of the heme ligand. Accordingly, we have been interested in synthesizing a nonheme dimer with a linear $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ bridge so that the features of the $180^{\circ}$ superexchange limit may be examined with "innocent" nonbridging ligands.

A second point of interest concerns the possible interconversion of $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ and $\mathrm{Fe}_{2}(\mathrm{OH})_{2}{ }^{4+}$ dimers in solution, a process which was suggested in a kinetic study of the dissociation of an oxo-bridged Fe (III) complex. ${ }^{8}$ Evidence for the existence of both structural types has been presented for the aqueous Fe(III)- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}: 6^{\prime \prime}, 2^{\prime \prime \prime}$-tetrapyridyl system. ${ }^{9}$ The preparation and detailed characterization of $\mathrm{Fe}_{2}(\mathrm{OH})_{2}{ }^{4+}$ dimers has proved to be surprisingly elusive, although recently a number of such dimers have been prepared in which the four nonbridging sites of each Fe (III) were occupied by a water molecule and by a terdentate pyridine-2,6-dicarboxylate ligand. ${ }^{10}$ To establish the effect of nonbridging ligands on the geometry and magnetic properties of the $\mathrm{Fe}_{2}(\mathrm{OH})_{2}{ }^{4+}$ unit, substituent effects at the pyridine 4 position were investigated. Substituents such as $-\mathrm{H},-\mathrm{OH}$, and $-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ yielded $\mathrm{Fe}_{2}(\mathrm{OH})_{2}{ }^{4+}$ dimers. ${ }^{10,11}$ In constrast, the Fe (III) complex of 4-chloro-2,6pyridinedicarboxylate did not exhibit the O-H vibrational modes characteristic of $\mathrm{Fe}_{2}(\mathrm{OH})_{2}{ }^{4+}$ complexes. The results of both infrared and magnetic measurements were consistent with a $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ structural unit. With a view toward comparing $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ and $\mathrm{Fe}_{2}(\mathrm{OH})_{2}{ }^{4+}$ dimers with similar nonbridging ligands, we initiated a crystallographic study of the above oxobridged Fe (III) dimer. We report here the molecular structure of $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and the magnetic behavior of its linear $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ bridge. Issues raised above concerning the magnetism of oxo-bridged Fe (III) heme dimers are discussed in view of these results.

## Experimental Section

(1) Preparation of $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, Chelidamic acid (Aldrich Chemical Co.) was converted by a published procedure ${ }^{12}$ into either the dimethyl or diethyl ester of 4 -chloropyridine-2,6-dicarboxylic acid. The free acid was prepared by saponification of the corresponding ester. The essentially water-insoluble title complex was

Table I. Crystal Data for [Cl-C7 $\left.\mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

| $a, \AA$ | 10.25 (1) | $Z$ | 4 |
| :---: | :---: | :---: | :---: |
| $b, \AA$ | 23.71 (1) | extinction | $h k l . h+k=2 n+$ 1 , and $h 0 l$, $l=2 n+1$ |
| c, $\AA$ | 10.015 (6) | space group | C2/c |
| $\beta, \mathrm{deg}$ | 90.0 (1) | $\mu, \mathrm{cm}^{-1}$ | 15.3 |
| $V, \AA^{3}$ | 2433.2 | $\lambda, \AA$ | 0.71069 |
| $d_{\text {obsd }}, \mathrm{g} / \mathrm{cm}^{3}$ | 1.83 (1) | temp, ${ }^{\circ} \mathrm{C}$ | $22 \pm 1$ |
| $d_{\text {calcd }} \mathrm{g} / \mathrm{cm}^{3}$ | 1.831 | mol wt | 670.9 |

prepared in crystalline form by the urea hydrolysis technique. ${ }^{10}$ Several experiments indicated that preparations employing either diester yielded better crystals than preparations employing the free diacid. In a typical preparation, 2.5 mmol each of diester, $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and urea were dissolved in 150 mL of hot ( $\sim 80^{\circ} \mathrm{C}$ ), distilled $\mathrm{H}_{2} \mathrm{O}$. The resulting light brown solution was filtered through a $0.22-\mu \mathrm{m}$ pore size membrane filter and placed in an oven maintained at $90 \pm 1^{\circ} \mathrm{C}$. After I day, a finely divided yellow precipitate and dark brown aqueous phase were obtained. Over an additional 2 -day period, the yellow precipitate gradually disappeared while red-brown crystals of the title complex grew. The product was collected by filtration, washed with distilled $\mathrm{H}_{2} \mathrm{O}$, and dried in air at room temperature. The yield was $0.80 \mathrm{~g}(96 \%)$.

Anal. Calcd for $\mathrm{Fe}_{2} \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{17} \mathrm{Cl}_{2}$ : $\mathrm{Fe}, 16.65 ; \mathrm{C}, 25.06 ; \mathrm{H}, 3.01$; $\mathrm{N}, 4.18 ; \mathrm{Cl}, 10.57$. Found: $\mathrm{Fe}, 16.50$ (iodometry); $\mathrm{C}, 24.80 ; \mathrm{H}, 3.26$; N, 4.12; Cl, 10.75 .

Examination of the chunky plates with a polarizing microscope revealed that the major face was not significantly dichroic. Moreover, for nearly all of the sample, the extinctions of this face varied from partial to approximately zero. However, a few crystals were obtained that did exhibit sharp extinctions; one of these was used to collect diffraction data.
(2) Physical Measurements. Infrared spectra were recorded using Perkin-Elmer Models 467 and 225 spectrophotometers. Samples were dispersed in $13-\mathrm{mm}$ diameter KBr pellets. Low-temperature spectra were obtained using a cryocooling head equipped with KBr windows and a Cryogenic Technology Inc. "Spectrum" closed-cycle helium gas refrigerator. As previously described, ${ }^{13}$ temperatures in the 20-30 K range were obtainable. Spectral studies of the title complex as single crystals, mulls, and pressed (neat) disks were made with a Cary 14 spectrophotometer.

Magnetic susceptibility data over the $4.2-270 \mathrm{~K}$ temperature range were obtained with a Princeton Applied Research Model 150 A vi-brating-sample magnetometer. Temperatures were monitored by using a Ga As diode in conjunction with a $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ standard. Computer fitting of the magnetic susceptibility data was performed on an IBM $360 / 75$ computer and utilized an adapted version of the function minimization program STEPT. ${ }^{14}$
(3) Collection of Diffraction Data. A crystal of dimensions $0.55 \times$ $0.15 \times 0.35 \mathrm{~mm}$ was mounted on the end of a glass rod along a face diagonal ( $a$ axis). Preliminary Weissenberg and precession photographs revealed systematic absences for $h k l, h+k=2 n+1$, and $h 0 l$, $l=2 n+1$. From visual examination, the photographs appeared to have mmm Laue symmetry; therefore, we assumed the complex to have crystallized in an orthorhombic unit cell. After we attempted unsuccessfully to solve the structure in the orthorhombic space groups consistent with these observations ( $\mathrm{Cmcm}, D_{2 h}^{17}$, no. 63; $\mathrm{Ama2}, C_{20}^{16}$, no. $40 ; C m c 2_{1}, C_{2 t}^{12}$, no. 36), the symmetry of the reciprocal lattice was examined carefully using an Enraf-Nonius CAD-3 automated diffractometer. This examination revealed a monoclinic (Laue symmetry $2 / m$ ) pseudoorthorhombic cell with $\beta=90.0(1)^{\circ}$. As an example of the extent of the deviation from $m m m$ symmetry, we cite the percent difference between $\left|F_{h k i}\right|$ and $\left|F_{h k i}\right|$, which was found to be $31 \%$. The structure was solved and refined successfully in space group $C 2 / c$ ( $C_{2 h}^{6}$, no. 15), which is consistent with the observed systematic absence and reciprocal lattice symmetry.
Unit cell dimensions (Table I) were determined from a least-squares fit of the $\theta, \chi$, and $\phi$ values of 13 reflections obtained using graphite monochromated Mo $\mathrm{K} \alpha$ radiation ( $\lambda=0.71069 \AA$ ) and an EnrafNonius CAD-3 automated diffractometer. The crystal density was measured by the gradient method ${ }^{15}$ using tetrabromoethane as the high-density medium and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the low-density medium; $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(d=1.924 \mathrm{~g} / \mathrm{cm}^{3}\right), \mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(d=1.864$
$\left.\mathrm{g} / \mathrm{cm}^{3}\right)$, and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\left(d=\left[/ 769 \mathrm{G} / \mathrm{cm}^{3}\right)\right.$ were used as standards. ${ }^{16}$ The observed value of $1.83(1) \mathrm{g} / \mathrm{cm}^{3}$ agreed well with the value of $1.831 \mathrm{~g} / \mathrm{cm}^{3}$ calculated for four $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2}-$ $\mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ units per unit cell.

A $\theta-2 \theta \operatorname{scan}\left(2^{\circ}<\theta<30^{\circ}\right)$ was used to collect 4050 unique reflections covering one quadrant $(+h,+k, \pm l)$ of reciprocal space. Of these, 1271 in the $+h,+k,+l$ octant with $F^{2}>3 \sigma\left(F^{2}\right)$ were used in an attempt to obtain a trial structure in an orthorhombic space group. Later, 2405 reflections with $F^{2}>3 \sigma\left(F^{2}\right)$ and indexes $+h,+k, \pm l$ were used to refine the structure in space group $C 2 / c$. All diffraction data were corrected for Lorentz, polarization, and absorption effects. Transmission factors ranged from 0.57 to 0.79 using a linear absorption coefficient of $15.3 \mathrm{~cm}^{-1}$ for Mo $\mathrm{K} \alpha$ radiation. Additional aspects of the data collection process have been described elsewhere. ${ }^{17}$
(4) Solution and Refinement of the Structure, ${ }^{18}$ The structure was solved by the heavy atom method and refined using full-matrix least-squares techniques. Space group Cmcm was assumed initially. Analysis of a normal sharpened Patterson map revealed the two unique iron and two unique chlorine atoms at special position $4 c(0, y, 1 / 4)$. Five additional atoms ( $\mathrm{Ox}, \mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(7)$, and $\mathrm{C}(8)$ ) were located by a series of structure factor, difference Fourier calculations, and all were found to occupy $4 c$ sites. Thus, these nine atoms were located on a line. Use of these atoms for a structure factor calculation gave a rather high value of $R_{\mathrm{F}}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|=0.45$. Although further phasing proved difficult, coordinates for two of the ring carbon atoms ( $\mathrm{C}(1)$ and $\mathrm{C}(4)$ ) were eventually determined.

At this point, it became apparent that the true space group could not be $\mathrm{Cmcm}, \mathrm{Cmc} 2_{1}$, or Ama2. Each of these has mirror planes perpendicular to $a$ and/or $c$, and the location of nine atoms on the line ( $0, y, 1 / 4$ ) would require the oxy-bridged dimer to have $m$ or $m m$ symmetry. Enforcing this mirror symmetry proved difficult and unrewarding, and so we assumed that the dimer probably had point symmetry 2.

Since we still thought that the structure was orthorhombic and that point symmetry 2 was required, space group $C 222_{1}$ was assumed (note that $C 222_{1}$ is not consistent with the glide plane extinction). A series of structure factor, difference Fourier calculations revealed coordinates for all remaining nonhydrogen atoms except those of the lattice water molecules. The value of $R_{F}$ ( 0.41 ) was still unusually high. Inspection of intermolecular distances revealed that (calculated) hydrogen atoms from two symmetry-related pyridinedicarboxylate ligands were too close. To remedy this, one ligand would have to be rotated, destroying the orthorhombic symmetry. This led us to reexamine the reciprocal lattice (vide supra) and finally to space group $C 2 / c$ with $\beta=90.0(1)^{\circ}$ in which the remaining nonhydrogen atoms were easily located.

Initial refinement was based on $F^{2}$ and weights were set according to $w=1 / \sigma^{2}\left(F^{2}\right)$. Neutral atom scattering factors were obtained from Cromer and Waber. ${ }^{19}$ Real and imaginary parts of the anomalous dispersion correction ${ }^{20}$ were applied to iron and chlorine. Several cycles of isotropic refinement reduced $R_{F}$ to 0.095 ; three additional cycles utilizing anisotropic thermal parameters reduced $R_{F}$ to 0.061 .

At this stage, hydrogen atoms were located on a difference Fourier map and added as a fixed atom contribution to the structure factor with isotropic temperature factors equal to those of the atoms to which they are attached. Further refinement was based on $F$. A weighting scheme, chosen by an analysis of variance, led to the following assignments for $\sigma\left(F_{0}\right)$ :

$$
\begin{gathered}
\sigma\left(F_{\mathrm{o}}\right)=1.366-0.0064\left|F_{\mathrm{o}}\right|,\left|F_{\mathrm{o}}\right| \leq 16.9 \\
\sigma\left(F_{0}\right)=0.344+0.054\left|F_{0}\right|,\left|F_{\mathrm{o}}\right|>16.9
\end{gathered}
$$

Several additional cycles of anisotropic refinement led to convergence with $R_{F}=0.049$ and $R_{w F}=\left[\Sigma w\left(F_{0}-F_{\mathrm{c}}\right)^{2} / \Sigma w F_{0}^{2}\right]^{1 / 2}=0.068$. For the final cycle, all parameter changes were less than their associated esd's. A final difference electron density map showed a general background of $\pm 0.3 \mathrm{e} / \AA^{3}$ and revealed no significant features. Final atomic parameters, together with their estimated standard deviations, are given in Table II. A view of the structure, showing the atom numbering scheme, is given in Figure 1. A list of observed and calculated structure factors is available. ${ }^{21}$

Lastly, we mention that an attempt was made to refine the structure in space group $C_{c}$ which is also consistent with the observed diffraction pattern and which would permit an $\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ bond angle different

Table II. Fractional Atomic Coordinates ${ }^{a}$ and Thernal Parameters ${ }^{b}$ for $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

| atom | $x$ | $y$ | $z$ | $\begin{aligned} & \beta_{11} \text { or } \\ & B, \AA^{2} \\ & \hline \end{aligned}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Fe}(1)$ | 0 | 1751.7 (2) | $1 / 4$ | 26.2 (4) | 2.5 (1) | 30.5 (5) | 0 | -3.2 (4) | 0 |
| $\mathrm{Fe}(2)$ | 0 | 3246.9 (2) | $1 / 4$ | 23.1 (4) | 2.4 (1) | 33.2 (5) | 0 | -3.6(4) | 0 |
| $\mathrm{Cl}(1)$ | 0 | -1005.4 (5) | $1 / 4$ | 88.0 (13) | 3.1 (2) | 84.3 (14) | 0 | -3.9 (12) | 0 |
| $\mathrm{Cl}(2)$ | 0 | 6002.3 (5) | $1 / 4$ | 86.6(13) | 2.9 (2) | 102.4 (15) | 0 | 5.2 (13) | 0 |
| Ox | 0 | 2500 (1) | $1 / 4$ | 51 (3) | 3.3 (4) | 55 (3) | 0 | -3 (2) | 0 |
| $\mathrm{O}(1)$ | 1206 (2) | 1515 (1) | 4092 (2) | 52 (2) | 3.7 (3) | 50 (2) | 2(1) | 25 (2) | -2 (1) |
| $\mathrm{O}(2)$ | 2266 (2) | 811 (1) | 5094 (2) | 48 (2) | 6.6 (4) | 57 (2) | 4(1) | 30 (2) | -2 (1) |
| $\mathrm{O}(3)$ | 1578 (2) | 1713 (1) | 1239 (3) | 47 (2) | 7.1 (4) | 83 (3) | -5(1) | 30 (2) | -9(1) |
| $\mathrm{O}(4)$ | 1433 (2) | 3480 (1) | 1116 (2) | 45 (2) | 4.1 (3) | 53 (2) | 1(1) | 13 (2) | 1 (1) |
| $\mathrm{O}(5)$ | 2326 (2) | 4186 (1) | -37(2) | 51 (2) | 6.7 (4) | 58 (2) | -5(1) | 23 (2) | -4 (1) |
| $\mathrm{O}(6)$ | 1392 (3) | 3283 (1) | 3979 (3) | 60 (2) | 8.6 (4) | 59 (3) | -6(1) | -35 (2) | 3 (1) |
| $\mathrm{O}(7)$ | 3260 (3) | 2578 (1) | 1576 (3) | 49 (2) | 9.3 (4) | 66 (2) | 0(1) | -2 (2) | 3 (1) |
| $\mathrm{O}(8)$ | 4101 (3) | 2549 (1) | 4232 (3) | 61 (2) | 10.0 (4) | 53 (2) | 3(1) | -9 (2) | -1(1) |
| N(1) | 0 | 863 (1) | $1 / 4$ | 32 (3) | 1.8 (5) | 38 (3) | 0 | -11(3) | 0 |
| N(2) | 0 | 4134 (1) | $1 / 4$ | 37 (3) | 1.9 (5) | 37 (3) | 0 | 4 (3) | 0 |
| C(1) | 722 (3) | 593 (1) | 3390 (3) | 30 (2) | 3.6 (4) | 38 (2) | 2(1) | -8 (2) | -1 (1) |
| C(2) | 754 (3) | 10 (1) | 3434 (3) | 45 (3) | 3.9 (4) | 46 (3) | 3(1) | -8 (2) | 3(1) |
| C(3) | 1478 (3) | 997 (1) | 4283 (3) | 33 (2) | 4.3 (4) | 37 (2) | $1(1)$ | -9 (2) | -2 (1) |
| C(4) | 774 (3) | 4406 (1) | 1651 (3) | 28 (2) | 4.4 (4) | 36 (2) | -2(1) | 3 (2) | 0 (1) |
| C(5) | 788 (3) | 4990 (1) | 1594 (3) | 40 (3) | 4.3 (4) | 46 (3) | -2(1) | 0 (2) | 3 (1) |
| C(6) | 1589 (3) | 4000 (1) | 825 (3) | 31 (2) | 4.4 (4) | 39 (3) | -2(1) | 1 (2) | -3(1) |
| C(7) | 0 | -277 (2) | $1 / 4$ | 50 (4) | 3.1 (6) | 49 (4) | 0 | 4 (3) | 0 |
| C(8) | 0 | 5274 (2) | $1 / 4$ | 47 (4) | 3.1 (6) | 60 (4) | 0 | -6 (4) | 0 |
| $\mathrm{H}(\mathrm{C} 2)$ | 119 | -18 | 403 | 1.82 |  |  |  |  |  |
| H(C5) | 126 | 517 | 97 | 1.70 |  |  |  |  |  |
| $\mathrm{H}(\mathrm{O} 3-1)$ | 217 | 199 | 136 | 1.91 |  |  |  |  |  |
| $\mathrm{H}(\mathrm{O} 3-2)$ | 205 | 143 | 80 | 1.91 |  |  |  |  |  |
| H(O6-1) | 120 | 300 | 453 | 2.18 |  |  |  |  |  |
| H(O6-2) | 182 | 354 | 428 | 2.18 |  |  |  |  |  |
| $\mathrm{H}(\mathrm{O} 7-1)$ | 297 | 292 | 133 | 2.52 |  |  |  |  |  |
| $\mathrm{H}(\mathrm{O} 7-2)$ | 407 | 259 | 130 | 2.52 |  |  |  |  |  |
| H(O8-1) | 400 | 290 | 456 | 2.54 |  |  |  |  |  |
| H(O8-2) | 382 | 262 | 337 | 2.54 |  |  |  |  |  |

[^0]from $180^{\circ}$. Beginning with the final parameters for space group $C 2 / c$, block refinement was performed on parameters not related by the twofold axis in $C 2 / c$ (full-matrix refinement gave singular matrices). Although this procedure eventually reduced $R_{w F}$ to 0.066 and the $\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ angle to $\sim 178^{\circ}$, subsequent attempts at full-matrix refinement still gave singular matrices. We conclude that, within the limitations of the least-squares refinement, the molecule contains a twofold axis in space group C2/c. This view is also supported by the excellent agreement between chemically related interatomic distances (Table III), by the orientations of the thermal ellipsoids which are approximately normal to bond axes (Figure 1), and by the root mean square values of the thermal displacements along the principal axes of the ellipsoids which vary from 0.07 to $0.23 \AA$ for the entire molecule.

## Description of the Structure

The structure consists of discrete $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$ $\mathrm{Fe}_{2} \mathrm{O}$ dimeric units with point symmetry 2 . Each unit contains two chemically (although not crystallographically) equivalent, six-coordinate $\mathrm{Fe}(\mathrm{III})$ ions. The distorted octahedral $\mathrm{NO}_{5}$ donor sets are composed of a bridging oxide ion, two water molecules, and a terdentate pyridinedicarboxylate ligand. Owing to the limited ligand bite, the $\mathrm{O}(1)-\mathrm{Fe}(1)-\mathrm{O}\left(1^{\prime}\right)$ and $\mathrm{O}(4)-\mathrm{Fe}(2)-\mathrm{O}\left(4^{\prime}\right)$ bond angles (Table III) are reduced from their idealized value of $180^{\circ}$ to 148.9 (1) and $149.4(1)^{\circ}$, respectively. This structural feature has been observed previously with three $\mathrm{Fe}_{2}(\mathrm{OH})_{2^{4+}}$ dimers containing different pyri-dine-2,6-dicarboxylate ligands. ${ }^{10,11}$ Nine atoms ( $\mathrm{Cl}(1), \mathrm{C}(7)$, $\mathrm{N}(1), \mathrm{Fe}(1), \mathrm{Ox}, \mathrm{Fe}(2), \mathrm{N}(2), \mathrm{C}(8)$, and $\mathrm{Cl}(2))$ lie along a crystallographic twofold axis ( $0, y, 1 / 4$ ). Thus, the $\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ bridging angle crystallographically is constrained to be $180^{\circ}$. The $\mathrm{Fe}-\mathrm{Ox}$ distances [ 1.773 (2) and 1.772 (3) $\AA$ ] are equiv-


Figure 1. Molecular structure of $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ showing the atom numbering scheme. Lattice water molecules have been omitted for clarity.
alent and lie in the middle of the range reported for other $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ complexes (1.73-1.82 $\AA$ ). ${ }^{4-6}$ As noted for other $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ complexes, the $\mathrm{Fe}-\mathrm{O}$ bonds in the bridge are significantly shorter than both the $\mathrm{Fe}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ bonds [2.053 (3), 2.058 (3) $\AA$ ] and the $\mathrm{Fe}-\mathrm{O}$ (carboxylate) bonds [2.094 (2), 2.093 (2) $\AA$ ]. The $\mathrm{Fe}-\mathrm{N}$ distances ( 2.107 (3) and 2.102 (3) $\AA$ ) are the longest yet observed in dimeric Fe(III) complexes of 4 -substituted pyridine-2,6-dicarboxylates. In a series of three $\mathrm{Fe}_{2}(\mathrm{OH})_{2}{ }^{4+}$ dimers with the 4 substituents $-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2},-\mathrm{OH}$, and -H , the respective $\mathrm{Fe}-\mathrm{N}$ distances were observed ${ }^{10,11}$ to be 2.043 (6), 2.057 (5), and 2.070 (6) $\AA$. This increase in the $\mathrm{Fe}-\mathrm{N}$ bond length may be associated with the accompanying decrease in ligand basicities (i.e., electron density on the pyridine nitrogen atom) known from titration studies ${ }^{22}$ and is in harmony with the Hammett constants ${ }^{23}$ of the substituents. A further diminution in ligand basicity (and therefore increase in $\mathrm{Fe}-\mathrm{N}$ bond length) is expected for the 4 -chloro derivative.

Table III. Bond Distances ( $\AA$ ) and Angles (deg) for [ $\left.\left.\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right]$

| atoms | distance | atoms | distance |
| :---: | :---: | :---: | :---: |
| $\mathrm{Fe}(1)-\mathrm{Ox}$ | 1.773 (3) | $\mathrm{Fe}(2)-\mathrm{Ox}$ | 1.772 (3) |
| $\mathrm{Fe}(1)-\mathrm{O}(1)$ | 2.094 (2) | $\mathrm{Fe}(2)-\mathrm{O}(4)$ | 2.093 (2) |
| $\mathrm{Fe}(1)-\mathrm{O}(3)$ | 2.053 (3) | $\mathrm{Fe}(2)-\mathrm{O}(6)$ | 2.058 (3) |
| $\mathrm{Fe}(1)-\mathrm{N}(1)$ | 2.107 (3) | $\mathrm{Fe}(2)-\mathrm{N}(2)$ | 2.102 (3) |
| $\mathrm{Fe}(1) \ldots \mathrm{Fe}(2)$ | 3.545 (1) |  |  |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | 1.324 (3) | $N(2)-C(4)$ | 1.330 (4) |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.384 (4) | $C(4)-C(5)$ | 1.384 (4) |
| $\mathrm{C}(2)-\mathrm{C}(7)$ | 1.390 (4) | $\mathrm{C}(5)-\mathrm{C}(8)$ | 1.389 (4) |
| $\mathrm{C}(7)-\mathrm{Cl}(1)$ | 1.728 (5) | $\mathrm{C}(8)-\mathrm{Cl}(2)$ | 1.728 (5) |
| $\mathrm{C}(1)-\mathrm{C}(3)$ | 1.523 (4) | $\mathrm{C}(4)-\mathrm{C}(6)$ | 1.520 (4) |
| $\mathrm{C}(3)-\mathrm{O}(1)$ | 1.273 (4) | $\mathrm{C}(6)-\mathrm{O}(4)$ | 1.278 (4) |
| $\mathrm{C}(3)-\mathrm{O}(2)$ | 1.228 (4) | $\mathrm{C}(6)-\mathrm{O}(5)$ | 1.229 (4) |
| atoms | angle | atoms | angle |
| $\mathrm{Ox}-\mathrm{Fe}(1)-\mathrm{O}(1)$ | 105.5 (1) | $\mathrm{Ox}-\mathrm{Fe}(2)-\mathrm{O}(4)$ | 105.3 (1) |
| $\mathrm{Ox}-\mathrm{Fe}(1)-\mathrm{N}(1)$ | 180 | $\mathrm{Ox}-\mathrm{Fe}(2)-\mathrm{N}(2)$ | 180 |
| $\mathrm{Ox}-\mathrm{Fe}(1)-\mathrm{O}(3)$ | 92.5 (1) | $\mathrm{Ox}-\mathrm{Fe}(2)-\mathrm{O}(6)$ | 92.4 (1) |
| $\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{O}(3)$ | 87.5 (1) | $\mathrm{N}(2)-\mathrm{Fe}(2)-\mathrm{O}(6)$ | 87.6 (1) |
| $\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{O}(1)$ | 74.5 (1) | $\mathrm{N}(2)-\mathrm{Fe}(2)-\mathrm{O}(4)$ | 74.7 (1) |
| $\mathrm{O}(3)-\mathrm{Fe}(1)-\mathrm{O}(1)$ | 89.5 (1) | $\mathrm{O}(6)-\mathrm{Fe}(2)-\mathrm{O}(4)$ | 88.8 (1) |
| $\mathrm{O}(3)-\mathrm{Fe}(1)-\mathrm{O}\left(3^{\prime}\right)$ | 174.9 (1) | $\mathrm{O}(6)-\mathrm{Fe}(2)-\mathrm{O}\left(6^{\prime}\right)$ | 175.3 (1) |
| $\mathrm{O}(1)-\mathrm{Fe}(1)-\mathrm{O}\left(3^{\prime}\right)$ | 89.1 (1) | $\mathrm{O}(4)-\mathrm{Fe}(2)-\mathrm{O}\left(6^{\prime}\right)$ | 89.9 (1) |
| $\mathrm{O}(1)-\mathrm{Fe}(1)-\mathrm{O}\left(1^{\prime}\right)$ | 148.9 (1) | $\mathrm{O}(4)-\mathrm{FE}(2)-\mathrm{O}\left(4^{\prime}\right)$ | 149.4 (1) |
| $\mathrm{Fe}(1)-\mathrm{Ox}-\mathrm{Fe}(2)$ | 180 |  |  |
| $\mathrm{Fe}(1)-\mathrm{N}(1)-\mathrm{C}(1)$ | 119.0 (2) | $\mathrm{Fe}(2)-\mathrm{N}(2)-\mathrm{C}(4)$ | 119.1 (2) |
| $\mathrm{Fe}(1)-\mathrm{O}(1)-\mathrm{C}(3)$ | 120.1 (2) | $\mathrm{Fe}(2)-\mathrm{O}(4)-\mathrm{C}(6)$ | 119.6 (2) |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}\left(1^{\prime}\right)$ | 122.1 (4) | $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}\left(4^{\prime}\right)$ | 121.9 (4) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 122.2 (3) | $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | 121.2 (3) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(3)$ | 112.0 (3) | $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(6)$ | 111.6 (3) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$ | 117.0 (3) | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$ | 116.8 (3) |
| $\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}\left(2^{\prime}\right)$ | 121.5 (4) | $C(5)-C(8)-C\left(5^{\prime}\right)$ | 122.0 (4) |
| $\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{Cl}(1)$ | 119.2 (2) | $\mathrm{C}(5)-\mathrm{C}(8)-\mathrm{Cl}(2)$ | 119.0 (2) |
| $\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{O}(2)$ | 119.8 (3) | $\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{O}(5)$ | 119.6 (3) |
| $\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{O}(1)$ | 114.1 (3) | $\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{O}(4)$ | 114.8 (3) |
| $\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{O}(2)$ | 126.1 (3) | $\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{O}(5)$ | 125.7 (3) |

The relatively long Fe- N bond distances observed for the title complex may in part also be due to a trans effect. The Fe-N bonds in the dihydroxy dimers are trans to the bridging OH groups whereas those in the title complex are trans to the more tightly bound bridging oxide groups. Except for the features of the $\mathrm{Fe}-\mathrm{N}$ and $\mathrm{Fe}-\mathrm{Ox}$ bonds noted above, the remaining Fe (III) bond distances are comparable to those observed for related $\mathrm{Fe}_{2}(\mathrm{OH})_{2}{ }^{4+}$ dimers. ${ }^{10,11}$ The remaining four Fe (III) bonds to the various oxygen donors (carboxylate, $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}$ ) in the title complex and in the three related $\mathrm{Fe}_{2}(\mathrm{OH})_{2}{ }^{4+}$ complexes fall in the 1.99-2.09 $\AA$ range, which is typical for Fe (III)-O bonds in complexes of $S=5 / 2 \mathrm{Fe}$ (III). ${ }^{24}$

Bond distances and angles within the terdentate ligand are unremarkable and compare closely with those observed for structures with chemically similar ligands. The pyridine ring units are planar to approximately $\pm 0.01 \AA$ while the carboxylate groups are bent and twisted slightly from these planes (Table IV). Unique to this particular terdentate ligand are the $\mathrm{C}-\mathrm{Cl}$ bond lengths, both of which are 1.728 (5) $\AA$. These distances are close to those reported for other C (aromatic) -Cl bonds. ${ }^{25}$ Overall, we note that structural parameters for both halves of the dimer are identical within experimental error, indicating that refinement of the structure was reliable.
In the crystal, dimers are linked together loosely by an extensive hydrogen bonding network involving the bridging oxide ion, the carboxylate oxygen atoms, and both ligand and lattice water molecules. Inter- and intramolecular hydrogen bonding distances are presented in Table V. Both the hydrogen bonding network and the packing of the structure are shown in Figure 2.

## Magnetic Susceptibility Results and Discussion

A diamagnetism of $-350 \times 10^{-6} \mathrm{cgsu}$ was estimated for the dimer, using Pascal's constants. ${ }^{26}$ Corrected magnetic susceptibilities per mol of dimer ( $\chi_{\mathrm{M}}$ ) are listed in Table VI and plotted in Figure 3. Effective magnetic moments ( $\mu_{\text {eff }}$ ) per Fe (III) were calculated from the corrected susceptibility data using the formula $\mu_{\text {eff }}{ }^{2}=(7.998 / 2) \chi_{\mathrm{M}} T$. An antiferromagnetic exchange interaction clearly is indicated by the gradual decrease of $\mu_{\text {eff }}$ from $1.91 \mu_{\mathrm{B}}$ at 270 K to $0.19 \mu_{\mathrm{B}}$ at 4.2 K .

The expression for $\chi_{M}$ employing the usual spin-spin interaction model based upon the exchange Hamiltonian $H=$ $-2 J \bar{S}_{1} \bar{S}_{2}$ with $S_{1}=S_{2}=5 / 2$ has been derived elsewhere. ${ }^{26,27}$ Inclusion of terms for the temperature-independent paramagnetic susceptibility (TIP) and for possible sample contamination by a paramagnetic Fe (III) monomeric impurity ( $4.4 T^{-1} \chi_{\text {para }}$ ) yields the relationship

$$
\begin{array}{r}
\chi_{\mathrm{M}}=\frac{2 N g^{2} \beta^{2}}{k T}\left(\frac{55+30 z^{10}+14 z^{18}+5 z^{24}+z^{28}}{11+9 z^{10}+7 z^{18}+5 z^{24}+3 z^{28}+z^{30}}\right) \\
+\frac{4.4 \chi_{\text {para }}}{T}+\text { TIP }
\end{array}
$$

where $z=\exp [-J / k T]$ and $N, g, \beta, k$, and $T$ have their usual meanings.

A least-squares fitting computer program was used to fit the observed data to the above equation for two different cases. First, $g$ was assumed to be 2.00 and contamination by a paramagnetic Fe (III) monomer was ignored; the computer fit yielded $-J=115 \mathrm{~cm}^{-1}$ and TIP $=1.2 \times 10^{-3} \mathrm{cgsu}$. Second, $g$ was assumed to be 2.00 and the impurity term was included.

Table IV. Least-Squares Planes and Deviations Therefrom for [ $\left.\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

${ }^{a}$ Equations are of the form $A X_{0}+B Y_{0}+C Z_{0}=D$ where $X_{0}, Y_{0}$, and $Z_{0}$ are Cartesian axes lying along $b x c^{*}, b$, and $c^{*}$, respectively. ${ }^{b}$ The following sets of atoms are strictly coplanar: $\mathrm{Ox}, \mathrm{N}(1), \mathrm{O}(1), \mathrm{O}\left(1^{\prime}\right), \mathrm{Fe}(1) ; \mathrm{Ox}, \mathrm{N}(2), \mathrm{O}(4), \mathrm{O}\left(4^{\prime}\right), \mathrm{Fe}(2) ; \mathrm{Ox}, \mathrm{N}(1), \mathrm{O}(3), \mathrm{O}\left(3^{\prime}\right), \mathrm{Fe}(1) ; \mathrm{Ox}$, $\mathrm{N}(2), \mathrm{O}(6), \mathrm{O}\left(6^{\prime}\right), \mathrm{Fe}(2),{ }^{c}$ Corresponding primed and unprimed atoms are related by a twofold axis along $b$.

Table V. Hydrogen Bonding Contacts in $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$\left.\begin{array}{cccccc}\hline \begin{array}{c}\text { donor } \\ \text { (D) }\end{array} & \begin{array}{c}\text { hydrogen } \\ (\mathrm{H})\end{array} & \begin{array}{c}\text { acceptor } \\ (\mathrm{A})^{a}\end{array} & \mathrm{D}-\mathrm{H} \cdots \mathrm{A}\end{array}\right]$

[^1] $=1-x, y, 1 / 2-z ; \mathrm{v}=1 / 2-x,-1 / 2+y, 1 / 2-z ; \mathrm{vi}=1 / 2-x, 1 / 2+y, 1 / 2-z, b$ Only H $\cdots \mathrm{A}$ distances less than $3 \AA$ are listed.


Figure 2. Stereoscopic packing diagram of [ $\left.\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O}-4 \mathrm{H}_{2} \mathrm{O}$ showing the hydrogen bonding network (light lines).


Figure 3. Temperature dependence of the magnetic susceptibility (open circles) and effective magnetic moments (solid circles) for $[\mathrm{Cl}-$ $\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$.

An improved fit was obtained with $-J=107 \mathrm{~cm}^{-1}$, TIP $=8.5$ $\times 10^{-4} \mathrm{cgsu}$, and $0.08 \%$ of high-spin Fe (III) impurity. Magnetic moments calculated using the latter fitting procedure are presented in Table VI and in Figure 3. Corrections for the presence of high-spin Fe (III) impurities also were considered appropriate in the evaluation of $J$ values for $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ complexes having Schiff bases ${ }^{28}$ and heme ${ }^{5}$ groups as nonbridging ligands.
Our treatment of this dimer as a species for which $S_{1}=S_{2}$ $=5 / 2$ is supported by (a) structural similarities (vide supra) with related $\mathrm{Fe}_{2}(\mathrm{OH})_{2}{ }^{4+}$ dimers unambiguously containing $S=$ $5 / 2 \mathrm{Fe}$ (III) ions and (b) spectral studies. Electronic-spectral features of the dimer include a weak ( $\epsilon \simeq 1$ ) band at $\sim 13000$ $\mathrm{cm}^{-1}$ (observable in pressed disks of the neat complex) and overlapping absorptions at $\sim 20400$ and $\sim 22200 \mathrm{~cm}^{-1}$. These latter absorptions have $\epsilon$ values of $\sim 30$ for incident light parallel to the FeOFe direction in the crystals. Both the positions and intensities of the above absorption bands are reminiscent of those reported for $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ dimers having $S=5 / 2 \mathrm{Fe}$ (III) ions. ${ }^{4}$ Although magnetic susceptibility measurements alone cannot distinguish between $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ dimers of either $S=5 / 2$ or $S=3 / 2 \mathrm{Fe}$ (III) ions, only examples of the former type have been observed. ${ }^{4}$

Table VI. Magnetic Susceptibility Data for $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{a}$

|  |  |  | effective magnetic <br> moment <br> per $\mathrm{Fe}, \mu_{\mathrm{B}}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $T, \mathrm{~K}$ | obsd | calcd |  | obsd |
| 270. | 3.39 | 3.48 | 1.91 | 1.94 |
| 249. | 3.36 | 3.42 | 1.83 | 1.84 |
| 221. | 3.29 | 3.32 | 1.70 | 1.71 |
| 197. | 3.22 | 3.22 | 1.59 | 1.59 |
| 170. | 3.06 | 3.05 | 1.44 | 1.44 |
| 141. | 2.79 | 2.78 | 1.25 | 1.25 |
| 121. | 2.62 | 2.51 | 1.12 | 1.10 |
| 103. | 2.21 | 2.18 | 0.95 | 0.95 |
| 81.6 | 1.76 | 1.70 | 0.76 | 0.74 |
| 70.0 | 1.40 | 1.42 | 0.63 | 0.63 |
| 58.1 | 1.15 | 1.17 | 0.52 | 0.52 |
| 47.7 | 0.99 | 1.03 | 0.44 | 0.44 |
| 41.3 | 0.93 | 0.98 | 0.39 | 0.40 |
| 35.8 | 0.94 | 0.97 | 0.37 | 0.37 |
| 27.4 | 0.99 | 0.98 | 0.33 | 0.33 |
| 19.6 | 1.08 | 1.03 | 0.29 | 0.29 |
| 15.7 | 1.15 | 1.08 | 0.27 | 0.26 |
| 12.7 | 1.26 | 1.13 | 0.25 | 0.24 |
| 9.5 | 1.39 | 1.23 | 0.23 | 0.22 |
| 6.2 | 1.13 | 1.43 | 0.17 | 0.19 |
| 4.2 | 2.10 | 1.71 | 0.19 | 0.17 |

${ }^{a}$ The diamagnetic correction used is $-350 \times 10^{-6} \mathrm{cgs}$ per dimer.

Superexchange pathways within a $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ unit consist of various orbital overlaps which serve to couple $S=5 / 2 \mathrm{Fe}$ (III) ions via the diamagnetic oxide bridge. Detailed considerations of these pathways suggest that linear $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ units with short $\mathrm{Fe}-\mathrm{O}$ bond distances should show the largest antiferromagnetic coupling. ${ }^{7}$ In comparison with other oxo-bridged Fe(III) dimers of nonheme ligands, ${ }^{4}$ the title complex has (a) unremarkable $\mathrm{Fe}-\mathrm{O}$ bond distances ( $1.772,1.773 \AA$ ) which fall within the range typically observed (1.76-1.82 $\AA$ ), and (b) a linear as opposed to bent $\left(\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}=139-178^{\circ}\right) \mathrm{Fe}_{2} \mathrm{O}^{4+}$ unit. The extent of superexchange coupling in the title complex ( $-J$ $\simeq 107 \mathrm{~cm}^{-1}$ ) barely lies outside the range ( $-J=90-100$ $\mathrm{cm}^{-1}$ ) reported for the bent oxo-bridged Fe (III) species. It is
apparent that antiferromagnetic coupling within $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ units is not a very sensitive function of the $\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ bridging angle. This result contrasts with the large angular dependence observed for $\mathrm{Cu}_{2}(\mathrm{OH})_{2}{ }^{2+}$ units. ${ }^{29}$ In view of this, the near linearity reported for the $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ units in two dimeric heme complexes ${ }^{5}$ cannot entirely account for the conspiciously large coupling ( $-J=122-146 \mathrm{~cm}^{-1}$ ) characteristic of oxo-bridged heme dimers. Accordingly, we suggest that it originates from particularly tight $\mathrm{Fe}-\mathrm{O}$ bonding. This suggestion is supported by several structural studies of monomeric and dimeric heme complexes containing $S=5 / 2 \mathrm{Fe}$ (III). The square pyramidal Fe (III) coordination geometry in such complexes has several peculiar structural features. The Fe(III) ions lie $\sim 0.5 \AA$ from the best plane of the four porphyrin N donors and are displaced toward the fifth (apical) ligand. Moreover, the apical bond length is relatively short. For example, in chlorohemin, ${ }^{30}$ the $\mathrm{Fe}(S=5 / 2)-\mathrm{Cl}($ apical $)$ distance $(2.218 \AA)$ was thought ${ }^{24}$ to be more appropriate for $S=1 / 2 \mathrm{Fe}$ (III). However, subsequent crystallographic studies have shown that this distance is only slightly short for the type of bonding involved. The square pyramidal coordination geometry in chlorohemin is approximated by that of $\mathrm{Fe}(\mathrm{III})$-chloro complexes with Schiff-base ligands; four such complexes have been studied crystallographically. ${ }^{31-33}$ Distances observed between the $S=5 / 2$ Fe (III) ions and the approximately apical $\mathrm{Cl}^{-}$ions spanned the range 2.226-2.262 $\AA$. For comparison, a length of 2.314 $\AA$ was reported for the $\mathrm{Fe}(\mathrm{III})-\mathrm{Cl}$ bond in a six-coordinate high-spin complex of this type. ${ }^{34}$ A length of $2.27 \AA$ was reported for the apical $\mathrm{Fe}-\mathrm{Cl}$ bond of a square pyramidal complex of $S=3 / 2 \mathrm{Fe}$ (III) having an $\mathrm{S}_{4} \mathrm{Cl}$ donor set; the Fe (III) was displaced $0.63 \AA$ from the best plane of the sulfur atoms toward the apical Cl ligand ${ }^{35}$ Simple high-spin six-coordinate $\mathrm{Fe}(\mathrm{III})$ complexes such as $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{FeCl}_{5} \mathrm{H}_{2} \mathrm{O}$ exhibit $\mathrm{Fe}-\mathrm{Cl}$ bond distances in the range $2.35-2.41 \AA .{ }^{36}$ Thus, an increase in coordination number from five to six results in a significant ( $0.1-0.2 \AA$ ) increase in the observed $\mathrm{Fe}-\mathrm{Cl}$ bond lengths. From the above data, the $\mathrm{Fe}-\mathrm{Cl}$ bond length observed for chlorohemin $(2.218 \AA)$ is seen to be only a bit short relative to those for reference approximately square pyramidal $S=5 / 2 \mathrm{Fe}$ (III) complexes.
The apical $\mathrm{Fe}-\mathrm{O}$ bond distance ( $1.842 \AA$ ) reported for a $S$ $=5 / 2$ methoxy Fe (III) heme derivative also appears short, ${ }^{24}$ at least relative to $\mathrm{Fe}-\mathrm{O}$ distances ( $1.92-1.99 \AA$ ) reported for various five- and six-coordinate hydroxo and alkoxo Fe (III) complexes. ${ }^{10,33,37}$ Coordination by the more nucleophilic phenoxy group present in various Schiff-base ligands ${ }^{31-33}$ results in $\mathrm{Fe}-\mathrm{O}$ bond lengths in the range $1.85-1.91 \AA$. Square pyramidal reference complexes of the type available for chlorohemin do not, to our knowledge, exist for the above methoxy Fe (III) heme complex.

Finally, we consider the oxo-bridged Fe (III) heme complexes, two of which have been characterized crystallographically. The shortest ${ }^{38} \mathrm{Fe}-\mathrm{O}$ distance known to us ( $\sim 1.73 \AA$ ) is that reported for the $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ unit of $\mu$-oxo-bis [protohemin dimethyl ester]. ${ }^{5}$ A somewhat longer $\mathrm{Fe}-\mathrm{O}$ bond distance ( $1.763 \AA$ ) was reported for $\mu$-oxo-bis $\{$ tetraphenylporphyrin iron(III)]. ${ }^{6}$ Thus, these dimeric heme complexes exhibit $\mathrm{Fe}-\mathrm{O}$ bond distances which are somewhat short compared with those (1.76-1.82 $\AA$ ) of nonheme dimers of this type. ${ }^{4}$ Especially tight bonding may be anticipated within the $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ unit of dimeric heme complexes because both $\mathrm{Fe}-\mathrm{O}$ bonds are apical components of square pyramidal $S=5 / 2 \mathrm{Fe}$ heme fragments. We believe that the strong coupling exhibited by such complexes more likely originates because of this structural feature and that the near linearity of the $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ units is of secondary magnetic significance. Some special electronic-structural role of the heme ligands apparently is also operable here since substantially less superexchange coupling occurs via two $\mathrm{Fe}-\mathrm{O}$ bonds which are apical components of $S=5 / 2 \mathrm{Fe}$ Schiff-base


Figure 4. Infrared spectra at 300 (upper curve) and 30 K (lower curve) of $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Fe}\right]_{2} \mathrm{O} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ dispersed in a KBr pellet.
fragments. Structurally analogous to the oxo-bridged Fe (III) heme dimers, the Fe(III) ions in these latter complexes also are displaced $\sim 0.5 \AA$ toward the apical oxide ions.

There is one other possible explanation for the apparently greater coupling in the oxo-bridged heme dimers. Iron(III) porphyrins are known to possess large, axial, single-iron, zero-field splittings (i.e., $D S_{z}{ }^{2}$ ). For example, far-infrared measurements ${ }^{39}$ on certain high-spin ferric porphyrins indicated zero-field splitting $D$ values in the range of $5-17 \mathrm{~cm}^{-1}$. The $D$ values for nonporphyrin iron(III) complexes are expected to be considerably smaller. It has been our experience that the inclusion of the $D S_{z}{ }^{2}$ term into the spin Hamiltonian could appreciably affect the exchange parameter obtained in the least-squares fitting of the data. Thus, the more negative $J$ values evaluated for the oxo-bridged heme dimers could be an artifact of not accounting for the single-ion zero-field interactions.

## Infrared Spectra

The antisymmetric stretching vibration, $\nu_{\mathrm{AS}}(\mathrm{Fe}-\mathrm{O}-\mathrm{Fe})$, is an infrared-active mode used to characterize oxo-bridged Fe (III) compounds. ${ }^{4}$ This strong characteristic absorption appears in the neighborhood of $850 \mathrm{~cm}^{-1}$. Infrared absorption spectra were obtained at 300 and 30 K for the title complex and are shown in Figure 4. At 300 K in the region of $950-800 \mathrm{~cm}^{-1}$, four absorptions occur at 936, 902 (broad), 840 (unresolved), and $815 \mathrm{~cm}^{-1}$. Decreasing the temperature to 30 K again results in four absorptions in this region. The 936 - and $815-\mathrm{cm}^{-1}$ bands remain unchanged. However, the $902 \cdot \mathrm{~cm}^{-1}$ absorption shifts to $920 \mathrm{~cm}^{-1}$ and the $840-\mathrm{cm}^{-1}$ absorption is resolved and shifted to $850 \mathrm{~cm}^{-1}$. The only other changes in the two spectra are an increase of resolution in the region of $800-600 \mathrm{~cm}^{-1}$ and an increase of intensity and resolution of the absorptions at 500 $\mathrm{cm}^{-1}$. A single broad absorption at $436 \mathrm{~cm}^{-1}$ occurs at 300 K . At 30 K , this absorption is resolved into two absorptions, one
at $458 \mathrm{~cm}^{-1}$ and the other at $440 \mathrm{~cm}^{-1}$ which has increased in intensity with respect to the other bands in the spectrum.
Both the broad absorption at $902 \mathrm{~cm}^{-1}$ that shifts to 920 $\mathrm{cm}^{-1}$ at low temperatures and the absorption at $840 \mathrm{~cm}^{-1}$ that shifts to $850 \mathrm{~cm}^{-1}$ and becomes resolved are possible choices for the $\nu_{\mathrm{AS}}(\mathrm{Fe}-\mathrm{O}-\mathrm{Fe})$. Without an ${ }^{18} \mathrm{O}$ labeling experiment, it is not possible to assign either absorption unambiguously as the $\nu_{\mathrm{AS}}(\mathrm{Fe}-\mathrm{O}-\mathrm{Fe})$ mode. They may, in fact, be both attributable to the antisymmetric stretching mode. For example, $\nu_{\mathrm{AS}}(\mathrm{Fe}-\mathrm{O}-\mathrm{Fe})$ appears as a single absorption at $832 \mathrm{~cm}^{-1}$ for $\mu$-oxo-bis ( $N, N^{\prime}$-ethylenebis(salicylideniminato)iron(III) ${ }^{28}$ and as two absorptions at 870 and $890 \mathrm{~cm}^{-1}$ for $\mu$-oxo-bis(tetraphenylporphyrinatoiron(III)). ${ }^{40}$ Thus, it is possible that the $180^{\circ} \mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ angle in the title complex causes a splitting of the $\nu_{\mathrm{AS}}(\mathrm{Fe}-\mathrm{O}-\mathrm{Fe})$ which is even larger than that caused by the $174.5^{\circ} \mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ angle in the oxo-bridged iron(III) porphyrin.

Further, we note that the two highest energy bands in Figure 4 also are exhibited ${ }^{41}$ by $\left[\mathrm{Cl}-\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{NO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{OH}) \mathrm{Cr}\right]_{2}$, a dihydroxo-bridged ${ }^{42} \mathrm{Cr}$ (III) analogue of the title complex. Additional infrared spectral coincidences suggest that the above two bands are ligand modes common to the similarly ligated $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ and $\mathrm{Cr}_{2}(\mathrm{OH})_{2}{ }^{4+}$ units. Accordingly, it appears reasonable to associate the strong absorption at $\sim 902 \mathrm{~cm}^{-1}$ with the $\mathrm{Fe}_{2} \mathrm{O}^{4+}$ unit. The relatively large blue shift of the $902-$ and $840-\mathrm{cm}^{-1}$ bands at low temperatures is in agreement with the results of prior studies. ${ }^{43}$

Acknowledgments. Research at Rutgers University was supported by the Rutgers Computing Center (H.J.S., J.A.P.), the Rutgers Research Council (H.J.S.), and a Rutgers Biological Science Support Grant (H.J.S.). Research at the University of Illinois was funded in part by National Institutes of Health Grant HL 13652.

Supplementary Material Available: Listing of structure factor amplitudes for the title complex ( 12 pages). Ordering information is given on any current masthead page.

## References and Notes

(1) (a) Rutgers University; (b) University of Illinois.
(2) H.B. Gray and H. J. Schugar in "Inorganic Biochemistry", Vol. I, G. Eichhorn, Ed., American Elsevier, New York, N.Y., 1973, Chapter 3.
(3) J. Webb in "Techniques and Topics in Bioinorganic Chemistry", C. A. McAuliffe, Ed., Wiley, New York, N.Y., 1975, Chapter 4.
(4) K. S. Murray, Coord. Chem. Rev., 12, 1 (1974), and references cited therein.
(5) D. H. O'Keefe, C. H. Barlow, G. A. Smythe, W. H. Fuchsman, T. H. Moss, H. R. Lilienthal, and W. S. Caughey, Bloinorg. Chem., 5, 125 (1975).
(6) A. B. Hoffman, D. M. Collins, V. M. Day, E. B. Fleischer, T. S. Srivastava, and J. L. Hoard, J. Am. Chem. Soc. 94, 3620 (1972).
(7) A. P. Ginsberg, Inorg. Chim. Acta Rev., 5, 45 (1971).
(8) H. J. Schugar, A. T. Hubbard, F. Anson, and H. B. Gray, J. Am. Chem. Soc., 91, 71 (1969).
(9) M. Cerdonio, F. Mogno, B. Pispisa, G. L. Romani, and S. Vitale, Inorg. Chem., 16, 400 (1977).
(10) J. A. Thich, C. C. Ou, D. Powers, B. Vasiliou, D. Mastropaolo, J. A. Potenza, and H. J. Schugar, J. Am. Chem. Soc., 98, 1425 (1976).
(11) C. C. Ou, R. A. Lalancette, J. A. Potenza, and H. J. Schugar, J. Am. Chem. Soc., 100, 2053 (1978).
(12) D. G. Markees and G. W. Kidder, J. Am. Chem. Soc., 78, 4130 (1956).
(13) G. R. Hall and D. N. Hendrickson, Inorg. Chem., 15, 607 (1976).
(14) J. P. Chandler, Program 66, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind.
(15) B. W. Low and F. M. Richards, J. Am. Chem. Soc., 74, 1660 (1952).
(16) R. C. Weast, Ed., 'Handbook of Chemistry and Physics', 53 rd ed, Chemical Rubber Publishing Co., Cleveland, Ohio, 1972.
(17) J. A. Thich, D. Mastropaolo, J. Potenza, and H. J. Schugar. J. Am. Chem. Soc., 96, 726 (1974).
(18) In addition to local programs for the IBM $360 / 67$ computer, local modifications of the following programs were employed: Coppen's ABSORB program; Zalkin's FOROAP Fourier program; Johnson's ORTEP il thermal ellipsoid plotting program; Busing, Martin, and Levy's ORFEE error function and ORFLS least-squares program. The analysis of variance was carried out using program NANOVA obtained from Professor I. Bernal: see J. S. Ricci, Jr., C. A. Eggers, and I. Bernal, Inorg. Chim. Acta, 6, 97 (1972).
(19) D. T. Cromer and J. T. Waber, Acta Crystallogr., 18, 104 (1965).
(20) 'International Tables for X-Ray Crystallography", Vol. III, Kynoch Press, Birmingham, England, 1962, pp 201-213.
(21) See paragraph at end of paper regarding supplementary material.
(22) von E. Blasius and B. Brozio, Ber. Bunsenges. Phys. Chem., 68, 52 (1964).
(23) A. Albert in "Physical Methods in Heterocyclic Chemistry", Vol. III, A. R. Katritzky, Ed., Academic Press, New York, N.Y., 1971, Chapter 9.
(24) J. L. Hoard, M. J. Hamor, T. A. Hamor, and W. S. Caughey, J. Am. Chem. Soc., 87, 2312 (1965).
(25) (a) p-Dichlorobenzene, 1.749 (3) Á, G. L. Wheeler and S. D. Colson, Acta Crystallogr., Sect. B, 31, 911 (1975). (b) (p-Chlorophenyl)propionic acid, 1.741 (3) $A$; p-chloro-trans-cinnamic acid, 1.747 (3) A; J. P. Glusker, D. E. Zacharias and H. L. Carrell, J. Chem. Soc., Perkins Trans. 2, 68 (1975). (c) 2,2'-Dichlorobiphenyl, 1.741 (3) A, C. Romming, H. M. Seip, and I.-M. Aanesen ©ymo, Acta Chem. Scand., Ser. A, 28, 507 (1974).
(26) A. Earnshaw, 'Magnetochemistry', Academic Press, New York, N.Y., 1969.
(27) W. Wojciechowski, Inorg. Chim. Acta, 1, 319 (1967).
(28) R. G. Wollmann and D. N. Hendrickson, Inorg. Chem., 16, 723 (1977).
(29) V. H. Crawford, H. W. Richardson, J. R. Wasson, D. J. Hodgson, and W. E. Hatfield, Inorg. Chem., 15, 2107 (1976).
(30) D. F. Koenig, Acta Crystallogr., 18, 663 (1965).
(31) M. Gerloch and F. E. Mabbs, J. Chem. Soc. A, 1598 (1967).
(32) J. E. Davies and B. M. Gatehouse, Chem. Commun., 1166 (1970).
(33) J. A. Bertrand, J. L. Breece and P. G. Eller, Inorg. Chem., 13, 125 (1974).
(34) J/ A. Bertrand and J. L. Breece, Inorg. Chim. Acta, 8, 267 (1974).
(35) R. L. Martin and A. H. White, Inorg. Chem., 6, 712 (1967).
(36) Struct. Rep., 11, 417 (1951). Magnetic susceptibility studies of $\left(\mathrm{NH}_{4}\right)_{2}-$ [ $\left.\mathrm{FeCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ show that it is a $S=5 / 2 \mathrm{Fe}(\mathrm{III})$ complex. See E . Konig in "Magnetic Properties of Coordination and Organo-Metallic Compounds", Vol. II, New Series of Landolt-Börnstein, K. H. Hellwege, Ed., SpringerVerlag, West Berlin, 1966, Chapter 2, p 116.
(37) J. A. Bertrand and P. G. Eller, Inorg. Chem., 13, 927 (1974).
(38) The precision of this bond distance is uncertain because of crystallographic difficulties. Refinement of the atom positions was not completed because of disordering of the heme vinyl groups and the consequent expense of further refinement (private communication from J. L. Hoard).
(39) W. S. Caughey, H. Eberspaecher, W. H. Fuchsman, and S. McCoy, Ann. N.Y. Acad. Scl., 153, 722 (1969).
(40) I. A. Cohen, J. Am. Chem. Soc., 91, 1980 (1969).
(41) C. C. Ou, unpublished results
(42) Private communication from Derek Hodgson.
(43) H. J. Schugar, G. R. Rossman, C. G. Barraclough, and H. B. Gray, J. Am. Chem. Soc., 94, 2683 (1972), and references cited therein.


[^0]:    ${ }^{a}$ Nonhydrogen coordinates are $\times 10^{4}$; hydrogen coordinates are $\times 10^{3}$. ${ }^{b}$ Anisotropic thermal parameters are $\times 10^{4}$; the form of the anisotropic thermal ellipsoid is $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.

[^1]:    ${ }^{a}$ Numbers in parentheses indicate the following symmetry transformations: $\mathrm{i}=x, y, z ; \mathrm{ii}=1 / 2-x, 1 / 2-y, z ; \mathrm{iii}=1 / 2-x, 1 / 2-y, 1-z$; iv

